sábado, 12 de junio de 2010

Reactivo Limite

Reactivo Limitante

Cuando se ha ajustado una ecuación, los coeficientes representan el número de átomos de cada elemento en los reactivos y en los productos. También representan el número de moléculas y de moles de reactivos y productos.

Cuando una ecuación está ajustada, la estequiometría se emplea para saber las moles de un producto obtenidas a partir de un número conocido de moles de un reactivo. La relación de moles entre reactivo y producto se obtiene de la ecuación ajustada. A veces se cree equivocadamente que en las reacciones se utilizan siempre las cantidades exactas de reactivos. Sin embargo, en la práctica lo normal suele ser que se use un exceso de uno o más reactivos, para conseguir que reaccione la mayor cantidad posible del reactivo menos abundante.

Reactivo limitante

Cuando una reacción se detiene porque se acaba uno de los reactivos, a ese reactivo se le llama reactivo limitante.

Aquel reactivo que se ha consumido por completo en una reacción química se le conoce con el nombre de reactivo limitante pues determina o limita la cantidad de producto formado.

Reactivo limitante es aquel que se encuentra en defecto basado en la ecuación química ajustada.


Ejemplo:

Para la reacción:



¿Cuál es el reactivo limitante si tenemos 10 moléculas de hidrógeno y 10 moléculas de oxígeno?
Necesitamos 2 moléculas de H2 por cada molécula de O2

Pero tenemos sólo 10 moléculas de H2 y 10 moléculas de O2.

La proporción requerida es de 2 : 1

Pero la proporción que tenemos es de 1 : 1

Es claro que el reactivo en exceso es el O2 y el reactivo limitante es el H2

Como trabajar con moléculas es lo mismo que trabajar con moles.

Si ahora ponemos 15 moles de H2 con 5 moles de O2 entonces como la estequiometría de la reacción es tal que 1 mol de O2 reaccionan con 2 moles de H2, entonces el número de moles de O2 necesarias para reaccionar con todo el H2 es 7,5, y el número de moles de H2 necesarias para reaccionar con todo el O2 es 10.

Es decir, que después que todo el oxígeno se ha consumido, sobrarán 5 moles de hidrógeno. El O2 es el reactivo limitante

Una manera de resolver el problema de cuál es el reactivo es el limitante es:

Calcular la cantidad de producto que se formará para cada una de las cantidades que hay de reactivos en la reacción.

El reactivo limitante será aquel que produce la menor cantidad de producto.

Daremos continuidad al tema enseñando un video en donde se resuelve un problema de reactivo limite!



Estequiometria!

La estequiometría es el estudio cuantitativo de reactivos y productos en una reacción química.

Reacción química: proceso en el cual una sustancia (o sustancias) cambia para formar una o más sustancias nuevas.

Las reacciones químicas se representan mediante ecuaciones químicas. Por ejemplo el hidrógeno gas (H2) puede reaccionar con oxígeno gas(O2) para dar agua(H20). La ecuación química para esta reacción se escribe:

El '+' se lee como “reacciona con” y la flecha significa “produce”. Las fórmulas químicas a la izquierda de la flecha representan las sustancias de partida denominadas reactivos. A la derecha de la flecha están las formulas químicas de las sustancias producidas denominadas productos de la reacción. Los números al lado de las formulas son los coeficientes( el coeficiente 1 se omite).

¿Qué le ocurre a la material cuando sufre una reacción química?

Según la ley de la conservación de la masa los átomos ni se crean, ni se destruyen, durante una reacción química. Por lo tanto una ecuación química ha de tener el mismo número de átomos de cada elemento a ambos lados de la flecha. Se dice entonces que la ecuación esta balanceada.

! A continuación tenemos un video donde se ilustra el concepto de estequiometria en el laboratorio !


miércoles, 9 de junio de 2010

Leyes Fundamentales De La Quimica

En contraste con los brillantes logros de los científicos en otros campos, el avance la química fue mucho más lento y la revolución científica se produjo en ella en el siglo XVIII con más de un siglo de retrasao respecto a la física. Esto obedeció a que en aquella época los sistemas que servían para estudiar la química eran o debían ser mucho más complejos que los necesarios para el análisis de los problemas astronómicos y físicos por lo que no resultó nada fácil introducir en ellos la medida.

Ley de la conservacion de la masa o ley de lavoisier

probablemente, la aportación más importante que hizo Antonie Laurent Lavoisier (1743-1794) a la Química fue la implantación de la medida precisa a todos los procesos en los que la materia sufre transformaciones y el enunciado de la famosa ley de conservación de la masa.

En 1770 Lavoisier realizó el experimento del calentamiento del agua utilizando un aparato que condensaba el vapor y lo devolvía al recipiente, sin perder un sólo gramo de agua. Pesó el agua y el recipiente antes y después de realizar el experimento. Demostró que el peso del matráz, del condensador y del agua seguía siendo el mismo antes y después de una prolongada ebullición. Sin embargo, un sedimento terroso seguía apareciendo. Extrajo y pesó el depósito formado, así como el matráz y comprobó que la suma de ambos era igual al peso del matraz antes de iniciar la experiencia. Es decir, el poso terroso provenía de una descomposición del vidrio provocada por el calor.

Ley de las proporciones definidas o ley de proust

La labor de Lavoisier proporcionó una sólida base teórica para el análisis cuantitativo y pronto surgieron los estudios que condujeron a lo que posteriormente se denomimó Ley de las Proporciones Definidas, que a finales del siglo XVIII, dio origen a una gran controversia entre Berthollet y Proust, que duró casi ocho años.

Joseph Louis Proust (1754-1826) sostenía que la composición porcentual de un compuesto químico era siempre la misma, independientemente de su origen, por el contrario Claude Louis Berthollet (1748-1822) afirmaba que los elementos, dentro de ciertos límites, podían unirse en todas las proporciones.

Con el tiempo, se impuso el criterio de Proust apoyado en un experimento realizado en 1799, demostrando que la composición del carbonato cúprico era siempre la misma, cualquiera que fuese su método de obtención en la naturaleza o en el laboratorio: 5 partes de cobre, 4 de oxígeno y 1 de carbono.

Por tanto: los elementos se combinan para formar compuestos, y siempre lo hacen en proporciones fijas y definidas

Ley de las proporciones múltiples o ley de Dalton

Las investigaciones posteriores que los químicos realizaron para determinar en qué proporciones se unen los elementos químicos proporcionaron aparentes contradicciones con la ley de Proust, pues en ocasiones los elementos químicos se combinan en más de una proporción. Así, por ejemplo, 1 g de nitrógeno se puede combinar con tres proporciones distintas de oxígeno para proporcionar tres óxidos de nitrógeno diferentes, así:

Compuesto

Masa de N (g)

Masa de O (g)

Dióxido de nitrógeno (NO2) 1 2,28
Monóxido de nitrógeno (NO) 1 1,14
Óxido de nitrógeno (N2O) 1 0,57

Fue John Dalton (1776-1844) quien en 1803 generalizó este hecho con numerosos compuestos, observando que cuando dos elementos se combinan entre sí para formar compuestos diferentes, las diferentes masas de uno de ellos que se combina con una masa fija de otro, guardan entre sí una relación de números enteros sencillos. De forma que en nuestro ejemplo:

2,28 / 1,14 = 2 ; 2,28 / 0,57 = 4 ; 1,14 / 0,57 = 2